
CONNECTION BETWEEN THE CHARACTERISTICS 

OF THE SIGNAL OF A SHADOW INSTRUMENT 

AND THE SPECTRUM OF THE TURBULENCE 

Y u .  I .  K o p i l e v i c h  UDC 532.507 

The shadow method is one of the most  widely used methods for investigating turbulence 
[1, 2]. Using a shadow instrument  with photoelectr ic  recording, there  exists,  in principal,  
the possibi l i ty of finding the s tat is t ical  charac te r i s t i c s  of the turbulence from the s ta t i s -  
tical cha rac te r i s t i c s  of the random signal taken f rom the instrument.  In the presentwork ,  
an investigation is made of the connection between the mean value and the scat ter ing of the 
signal of a shadow instrument  and the energy spect rum of optical inhomogeneities in the 
medium. 

1 .  C o n n e c t i o n  b e t w e e n  t h e  M e a n  V a l u e  a n d  t h e  S c a t t e r i n g  

o f  t h e  S i g n a l  a n d  t h e  M o m e n t s  o f  t h e  L i g h t  F i e l d  

We consider  the overal l  scheme of the shadow instrument  i l lustrated in Fig. 1. A coherent mono- 
chromat ic  light beam f rom the i l luminator 1 passes  through a layer  of the medium under investigation, 
with a thickness L, located between the planes 2 and 3. The plane 3 is the front focal plane of the lens 5; 
a shadow diaphragm is located at its r e a r  focal plane 4 (the shadow plane). The light passing through the 
shadow plane is collected by lens 6 to the photoelectronic mult ipl ier  7. In what follows, by the "signal of 
the instrument"  we shall understand the intensity of the light falling on the photoelectronic multiplier.  

We introduce the Cartesian coordinates x, y, z in such a way that the z axis will be directed along 
the axis of the propagation of the light; the plane 2 corresponds  to z = 0, and the plane 3 to z = L. Let 
u(x, y, L ) -  u(x), x = (x, y) be the random distribution of the field at the plane 3. Then in the plane 4 the 
distribution of the field in the coordinates ~ =  (at, %2), connected with coordinates x = (x, y) by the relat ion- 
ship U = (2~r/~.f)x 0t is the wavelength of the light; f is the focal distance of lens 5), is a Four ie r  t r ans fo rm 
of u(x). In the case where the distance between the plane 3 and the lens 5 is not equal to the focal distance 
of the lens, the field in the plane 4 differs f rom the Four ie r  t r ans fo rm of the field u by a factor, equal to 
unity in its modulus [3]. 

We denote by E the energy of the light passing through the shadow diaphragm, collected by lens 6, 
and sent to the photorece iver  7. Then for the mean value of the signal of the shadow instrument <E> (the 
angular  brackets  mean averaging with respect  to the ensemble of realizations of the random medium) we 
obtain the express ion 

<~> - ( 2 ~ ) ,  o 

where the quantity F (xl, x2; L) -  (u(xl)u(x2) } is a function of the mutual coherence [41 or the second moment 
of the random field u in the plane z--L; X(~) is a transmission function with respect to the intensity 
of the shadow diagram. Analogously to (1.1), an expression can be written for the scattering D of the signal: 

D~<(E-- <E))2> = t S (1.2) 

• (x:) Z (• e:~'(x'-x')e:~"(x'--x') (r (x 1, x~, x3, x~; L) --  r (x:, x~; L) F (x 3, x4; L)), 
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w h e r e  the quant i ty  r (xt, x2, x~, x~; L)--(u(xl)fi(x2)u(x3)fi(x4)) is  the four th  m o m e n t  of the f ie ld  u in the  p lane  
:z = L, and r (x~, x~, xa, x~; L)_--_..~F(x~, x~, xa, x~; L)--F(xx, x~; L) 1" (xa,xr L) is  the  c e n t e r e d  four th  m o m e n t .  

2 .  C a l c u l a t i o n  o f  t h e  M o m e n t s  o f  t h e  L i g h t  F i e l d  

i n  t h e  B o r n  A p p r o x i m a t i o n  

We u s e  the  fol lowing a s s u m p t i o n s  wi th  r e s p e c t  to the r a n d o m  m e d i u m .  The  f ield of the  d i e l e c t r i c  
cons tan t  ~ (r), r = (x, y, z) i s  a s s u m e d  to be  s t a t i s t i c a l l y  homogeneous  and i s o t r o p i e .  The  d i m e n s i o n  of 
the  s m a l l e s t  h o m o g e n e i t i e s  in the  m e d i u m  ks a s s u m e d  to be  m u c h  l e s s  than  the  wave l eng th  of the  l ight ,  
which  m a k e s  it p o s s i b l e  to u s e  a s c a l a r  t h e o r y  of p r o p a g a t i o n  [5]. The  f luc tua t ions  of the  d i e l e c t r i c  con-  
s tant  a r e  a s s u m e d  to be  s m a l l :  

s ( r )=(e>( lA-s ' r ) ) ,  j e'(r)[ << l ,  (2.1) 

w h e r e  (e) (the m e a n  va lue  of the  d i e l e c t r i c  cons tan t )  does  not depend on the  c o o r d i n a t e s ,  by  v i r tue  of the 
a s s u m p t i o n s  adopted.  

The  f ield u(r)  s a t i s f i e s  the  b o u n d a r y - v a l u e  p r o b l e m  

[a ~ (r) + k '  (1 + ~' (~)) ~ (~) = 0, 

~u (r)]~=0 = u o (x), (2.2) 
| t i m  r { am __ ikl  u = O, ( ,._,~ ~a,- ] 

w h e r e  r =  (x, y, z); x = (x, y); k 2 = (21r)2/X 2 <~) ; X is  the  wave leng th  of the  l ight .  By v i r t u e  of (2.15, the  so lu -  
t ion of the  p r o b l e m  (2.2) can  be  sought  in the  f o r m  of a Born  expans ion  [6]: 

u(r) = Vo(r) + Vl(r) + V2(r) + . . . .  (2.3) 

w h e r e  Vi  (r),  i = O, 1, 2 . . . . .  has  the  i - t h  o r d e r  wi th  r e s p e c t  to the  va lue  of a' ,  S u b s t i t u t i n g  (2.3)  w i t h  r = 
(x, y, L) into the  d e t e r m i n a t i o n s  of the  second  and four th  m o m e n t s ,  and neg l ec t i ng  t e r m s  p r o p o r t i o n a l  to 
p o w e r s  of ~' h igher  than  the  second,  we obta in  

~.+j=2 

r (x 1, xz; L) = ~ r~j (xl, x~); (2.45 
i j=0 

~+i+/~+[=2 
r (xl, x~, x,, x4; L) - -  ~ r~jhz (xl, x~, x3, x4) , (2.5) 

i,],k,z =0 

w h e r e  x m = (x m ,  Ym) ,  m = 1, 2, 3, 4; 

F~j(xl,x2) ~--- <Vi(xl,ylL)<~ (x 2, y~, L)>; (2.6) 

r~(x~,x~,x~,x~) ---(V~(x~,y~, L) 17~(x~,y~,L) V~(x~,y~,n) 17~(x~,g~,L)>. (2.7) 

Ana logous ly ,  
i+j§ 

r (xl ,  x.; L) r (x. ,  x4; L) = ~ r ~  ( x .  x 2) rkz (x~, x4). (2 .8 )  
~j,~,~=0 

Tak ing  into c o n s i d e r a t i o n  that  F00(x~, x2) F i j  (x3, x4) =F00ij (xl, x2, x3, x4) and Fij (xl, x2)F00(x3, x4) =Fij00(xl, x2, 
x 3, x4), f r o m  (2.5), (2.8) we obta in  an e x p r e s s i o n  f o r  the  c e n t e r e d  four th  m o m e n t :  

F(xl, x2, xa, x4; L)----F~oox(xl, x,_,, x3, x~,) -{-Follo(x 1 ,xz ,x3 ,x4,5 ~Flo10(xl, x~, x 3, x4)Fol01(xl, x2, x3, x4). (2.9) 

To  c a l c u l a t e  the  t e r m s  e n t e r i n g  into (2.4), (2.9), we m u s t  find V0(r ) and Vl ( r  ) in the  p l ane  z = L .  The  
f ield of  u0(x ) in the  p lane  z =0  is  g iven  in the  f o r m  

(2.105 
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Subst i tut ing into (2.2) u(r) in the f o r m  of the expansion (2.3), by the usual  me thod  we find 

A ( - - B ( z )  2a.2[B(z) p @ikz ) ,  V 0 (r) = ~ exp x2 + vz 

whe re  B(z) -= 1 +i(z/ka2);  

(2.11) 

k2 ( ' e l h l r - - r ' l  , 
V 1 (r) = - -  ~ -  J ~ e (r') V o (r') dr'. (2.12) 

We use  the " sag i t t a l  approx ima t ion"  fo r  the G r e e n ' s  funct ion in (2.12), and a s s u m i n g  that  I x - x ' l  2/ 
(z-z ' )2<< 1 (x = ix, y)), we wr i t e  

We shal l  use  a l so  the fol lowing usual  a s s u m p t i o n s  [5]: 

kl  >> 1; (2.13) 

ka >> 1 ; (2.14) 

l << L, (2.15) 

whe re  l is the in te rna l  s ca l e  of the  inhomogene i t i e s .  

3 .  M e a n  V a l u e  o f  S i g n a l  o f  S h a d o w  I n s t r u m e n t  

A s s u m i n g  in (2.1I), (2.12) tha t  r = ix, y, L), and subs t i tu t ing  into (2.6), a f t e r  c e r t a i n  t r a n s f o r m a t i o n s ,  
taking account  of the  a s sum pt i ons  made ,  we obtain the fol lowing t e r m s  in the r igh t -hand  p a r t  of (2.4): 

where  
cons tant ;  

where  

xi ~- x2 . L x~-- x 2 

1"oo (x v xz) = IB-~- ~-  exp 2a ~ IB (L)~ 'z- "~- /' ~ [B (L)I z ; 

r M x .  x ~ ) = r o l ( X . X 2 ) - 0 ;  

F.~o (Xl, x ~ ) =  ~0~. (Xl, x 2 ) =  k Z L A 2  ( x ~ +  x2 ~ _ . _ ~ L X ~ - - x ~ ) i ( y ( s ) d s ,  
- -  ~ exp 2a 2 IB (L)l ~ + 2ka4 IB (L)I 2 . 

( i t "  - -  r i o  - ~  ~ ( r " , r ' )  - -  @ ' ( r ' ) g ( r " ) )  

(3.1) 

(3.2) 

(3.3) 

is the correlation function of the fluctuations of the dielectric 

( 2 2 ) 
1 2 k~A~ exp xi + x~ . 4- f L x2 -- x2 

rll(XI'X2)=" ~ 2a 2 IB(L)I2 --  2ka' ~ X 
L 

0 

(3.4) 

(p) _---- B (p ) .  
B ( L )  ' 

r 

~ (~l) = (1) (~l) = ~ 3 ~ S (~ (]r[) eimX+i~Y dxdydz; 

= (~h, ~l~) 

is a t w o - d i m e n s i o n a l  F o u r i e r  t r a n s f o r m  of the c o r r e l a t i o n  function.  [It can be shown that,  in the c a s e  of 
the o n e - d i m e n s i o n a l  i so t rop ic  field unde r  cons ide ra t ion ,  the two-d imens iona l  s p e c t r u m  of 5(~) is connec ted  
with the  t h r e e - d i m e n s i o n a l  F o u r i e r  t r a n s f o r m  of the  c o r r e l a t i o n  funct ion F(~) by the re la t ionsh ip  �9 07) = 

2~F07).] 

Subst i tut ing into (1.1) the e x p r e s s i o n  fo r  the second  m o m e n t  (2.4), we obtain 

where  

\ - -  • 4- -~-I \E / - - Ioo  , I0_o , lo2 , 11, 

t Ixa, x.,.) e L (~) dx ldx f l x"  

Calcula t ion  of (3.5) with the funct ions  Fij (x 1, x 2) f r o m  (3.1)-(3.4) l eads  to the r e su l t  

Ioo = A2a4 S )'- (• e--x-'~' d~r 

(3.5)  
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I .  o = Io, = 4 (I) (~l) ~ldq X (~) e -  d• (3.6) 

k:LA2aa e -a'~0l~+uq I o (2a~• d• d~l, i , ,=  T r {] (3.7) 
0 

where  I0(z) is a Bes se l  funct ion of an i m a g i n a r y  a r g u m e n t  with a z e r o  subsc r ip t .  

The quant i ty  I00 is the value of the  s ignal  in the absence  of  inhomogene i t i e s  (the "background  i l lumina -  
t ion");  in what  fol lows,  we shal l  c o n s i d e r  the m e a n  value of the devia t ion of the  s ignal  of the shadow in s t ru -  
ment  f r o m  the background  value  I00, i .e . ,  E '  = E- I00 .  F r o m  (3.6), (3.7) it fol lows that  

~a'A-~'k2r f ~ Z (~) e [e I o (2a ~z) -- I] d• d~. 
0 

(3.8) 

4 .  S c a t t e r i n g  o f  S i g n a l  o f  S h a d o w  I n s t r u m e n t  

Setting r = (x, y, z) in (2.11), (2.12) and subs t i tu t ing  into (2.7), a f t e r  c e r t a i n  t r a n s f o r m a t i o n s  taking 
account  of (2.13)-(2.15), we obtain the fol lowing t e r m s  in the r igh t -hand  p a r t  of (2.9): 

L 

r~ool(Xl, X~,X.,x4)=roooo(Xl, X~,x.,x~) T dp d~l(l)(TI)exp--~l 2 (L--P)~ -bi~(p)xl~] ~ (P)  X4~t); (4.1) k'Za ~ [B (L)I  ~" 
0 

Fol10(xl, x2, x3, x4)=Flo0i(x.-, xl, x~, xJ ;  (4.2) 
L ... .  

k 2 (' 
r,o~, (x,, ~,  ~, ~)  = - roooo ( ~ .  x~, ~,  ~) T J @ J ~ 0  (~) (4.3) 

0 

k2a. z IB (L)I.. " I T k IB (L)t~ + i~ (p)xal 1 -- if] (p) x3~ l ; 

FOIoI(X1, X2, Xs, X4)=FIOlo(X2,  Xl, X4, Xa). (4.4) 

Subst i tu t ing e x p r e s s i o n s  (4.1)-(4.4) into (2.9), we obtain the c e n t e r e d  four th  m o m e n t  F (xl, x2, x3, xa; L). 
Now, f r o m  (1.2) we have 

a 2 ~ pq'Z Im --" ~:- p~12 D. 2 D 2nk2A4a 8 f @ O l ) e -  n ~l dp cos - ~ .  ~(P'~]) - - ~ ' "  '--~k ~,~P(P,~I) d~], 
0 

(4.5) 

whe re  

(4.6) 

J0(z) is a B e s s e I  funct ion of z e r o  subsc r ip t .  

5 .  A n a l y s i s  o f  R e s u l t s  

As a shadow d iaph ragm,  in p r a c t i c e ,  d i a p h r a g m s  of one of the fol lowing two types  a r e  used :  1) a 
shadow d i a p h r a g m  in the f o r m  of an opaque ha l f -p lane ;  the c o r r e s p o n d i n g  t r a n s m i s s i o n  funct ion is 

• • 2 1 5  

2) a shadow d i a p h r a g m  in the  f o r m  of an opaque c i r c l e ;  the t r a n s m i s s i o n  funct ion is 
i 

i t z : > - h -  , 
Za(z) : : 

[o (5.1) 

The se l ec t ion  of the rad ius  of the  c i r c l e  in (5.1) is d ic ta ted  by the d i s t r ibu t ion  of the  in tens i ty  of the 
l ight  in the shadow plane  in the c a s e  of the a b s e n c e  of inhomogene i t i e s  in the vo lume unde r  inves t igat ion;  
f o r  the l ight  b e a m  (2.10), this  d i s t r ibu t ion  has the f o r m  Atexp(-aZ~2) ,  w h e r e  A t is a v e c t o r  cons tan t .  

We l imi t  o u r s e l v e s  to an ana lys i s  of the  r e su l t s  obtained (3.8), (4.5), and (4.6) f o r  the c a s e  of a 
"Gauss i an"  shadow d i a g r a m  with the t r a n s m i s s i o n  funct ion 

~r (• = t - -  e - ~ 2  (5.2) 
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The resu l t s  for  such a d iaphragm a re  found to be qual i tat ively c lose  to resu l t s  calculated for  a round dia-  
p h r a g m  (5.1); however,  the t r a n s m i s s i o n  function (5.2) cons iderably  s impl i f ies  the ana lys i s .  

Substitution of (5.2) into (3.8) gives 
oo 

0 

The quantity in shaped b r acke t s  in (5.3) is equal to the energy of the light beam,  in tegrated over  the t r a n s -  
v e r s e  c ro s s  sect ion of the intensi ty.  

The energy  s p e c t r u m  r in the iner t ia l  in terval  of f requencies  falls  with a r i s e  in ~?; for  the Kolmo-  
gorov spec t rum  (@01) ~ ~]-u/3 [5]. Thus,  in the iner t ia l  in terval  of f requencies ,  the function under the inte-  
gra l  sign in (5.3) has the f o r m  (with an accu racy  up to a factor)  ~-8/3  [ 1 - e x p  (-aZ0 2/2)]. This  function 
falls  monotonical ly  (as ~ -2/3 with ~?<< a -1, and ~? -8/3 with ~>>a -I) .  Consequently, the g r e a t e s t  contr ibution 
to the value of the mean  value of the signal is that  of the inhomogenei t ies  with the lowest  spat ial  f requencies .  
Sma l l - s ca l e  inhomogenei t ies  have only a sl ight effect  on the mean  value of the signal of the shadow ins t ru -  
ment .  

With subst i tut ion of (5.2) into (4.5), (4.6), we obtain 

[i 3 oxp(_ = - o ~4 )~1 4 ~ . 2 a ~ ] s i n ' ( ~ ) d p  d~l. (5.4) 

The quantity in shaped b racke t s  is equal to the square  of the energy  of the light beam.  

We introduce the following two conditions: 

The second condition follows f r o m  the f i r s t  with sa t is fac t ion of the usual re la t ionship a -~ l; the f i r s t  
is a weakened f o r m  of the usual condition of the sma l lnes s  of the diffract ion effects  -?"X'-L<< L F r o m  (5.5) 
the re  follow the re la t ionships  

{pTI2~2 L 2 

k / 

Taking (5.6), (5.7) into considerat ion,  in the expansion in s e r i e s  of the express ion  under the integral  sign 
in the integral  with r e spec t  to p in (5.4), we can l imi t  ourse lves  to the f i r s t  t e r m ,  

[ ~l~f ~ ,p~2\ I p~4 

Now, f r o m  (5.4) we have 
oo 

: ~nLa {~2A4a,] l(i)(~)exp( ~4 ] ~ q-52:ttq" D (5.8) 
0 

We note that the weighting function exp [ -  (332~ 2/4)]77 5 in (5.8) has a m a x i m u m  with ~ .  = f~10/3)  a -1 - 1.83 -1, 
whose " s h a r p n e s s "  can be judged f r o m  the "half-width" A, 

exp (-- vlSdq 
A ~ o ~ t . 4 a  - i .  

The d e c r e a s e  in the energy  s p e c t r u m  ~(r/) in the inert ial  in terval  ("~-11/3 fo r  the Kolmogorov  spec t rum)  
s c r e e n s  somewhat  the  action of the fac tor  rl 5 in (5.8), weakening the effect  of l a rge  inhomogenei t ies  (the 
low-f requency  p a r t  of the spec t rum) .  Thus,  we note the following: 

a) the g r e a t e s t  contr ibution to the sca t t e r ing  0f the signal of a shadow ins t rument  of the type under  
cons idera t ion  is that  of optical  inhomogenei t ies  with spat ia l  f requencies  d o s e  to 7?. - 1.Sa -1 (i.e., inhomo- 
genei t ies  with dimensions  c lose  to l .  = (2~'/rl .) ~-3~ is the radius of the light beam coming out 
of the i l luminator ;  

942 



b) small  inhomogeneities,  whose spatial frequencies are  g rea te r  than r l . + h  "-~ 3.2a- ' ,  make no con- 
tr ibution to the value of the scat ter ing of the signal of the instrument;  

c) inhomogeneities,  whose spatial frequencies are  smatl in compar ison with r~ , ~  1.8a-1~ do not, ";n 
pract ice ,  have any effect on the scat ter ing of the signal. 

1. 

2. 

3. 

4. 

5. 

6. 
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L A G  T I M E  OF T H E  B R E A K D O W N  O F  P R E S S E D  L E A D  A Z I D E  

V.  V .  S t e n ' g a c h  UDC 537.529 : 662.413 

Data are  obtained on the lag t ime of the breakdown arid the dielectr ic  strength of a solid 
porous dielectr ic  with a poros i ty  of 0.4 (pressed lead azide) with different durations of a 
rec tangular  voltage pulse f rom 10 -8 to 2 �9 10 -G SeCo 

Important  cha rac te r i s t i c s  of the pulsed breakdown of dielectr ics  are  the lag t ime of the breakdown and 
the dielectr ic  strength.  A lag of the breakdown is observed both for gases and for  solid d ie lec t r ics .  It con- 
sists  of the stat is t ical  lag and the t ime of formation of the discharge.  In gases a lag of the breakdown of 
10 -4 sec and more  has been observed [1-3]. In solid dielectr ics ,  the lag of the breakdown is considerably 
less  (1-8) �9 10 -8 sec [4, 5]. With such small  exposures,  in solid dielectr ics  an increase  in the e lect r ical  
s trength has been observed [6]. While in gases  a considerable par t  of the lag t ime of the breakdown con- 
sists  of the stat is t ical  lag, and only with s trong ionization of the spark gap will the lag t ime consist  only 
of the t ime of format ion of the discharge,  in solids the lag t ime consists mainly of the format ion t ime of 
the discharge.  

Data on the lag t ime of two-phase die lect r ics  consist ing of a solid body and a gas are  of interest .  A 
representa t ive  dielectr ic  of this type is p ressed  lead azide, consisting of crys ta l l ine  lead azide and air, 
which is investigated in the present  work. A study of the breakdown of lead azide and an explanation of its 
mechanism is also of interest  for  a study of its sensit ivity to an electr ic  spark. 

M e t h o d  o f  E x p e r i m e n t  

Powdered lead azide with a c rys ta l  s ize of 1-3# was pressed  between steel e lect rodes  to a density of 
2.8 g / c m  3. Under these c i rcumstances ,  in the solid dielectr ic  a porosi ty  of 0.4 was set up (40% of the 
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